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V/STOL and Noise Division
Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio

Abstract multi-element nozzle flows are assumed, herein, to
be related to the peak axial velocity decay in the

Jet noise shielding benefits for CTOL engine- flow field. The pertinent peak velocity is further
over-the-wing configurations were obtained with assumed to be that associated with the downstream
model-scale multitube and lobed mixer nozzles and edge of the shielding surface.
various shielding surface geometries. Spectral
data were obtained with jet velocities from 585 to In the present paper, the flow field and acous-
1110 ft/sec. Correlation equations for predicting tic characteristics of multi-element nozzle CTOL-
jet noise shielding benefits with single conical OTW configurations are first discussed separately.
nozzle installations were modified to correlate the The data include that obtained with small-scale
mixer nozzle data. The modification included con- 6- and 8-tube mixer nozzles (nominal equivalent
sideration of the number of nozzle elements and the diameter from 11 to 21 in.) and an 8-lobe orifice-

o peak axial velocity decay in the flow field adja- t pe mixer nozzle (nominal equivalent diameter,
cent to the shielding surface. The effect of for- 2- in.). In addition, data for a large-scale
ward velocity on jet noise attenuation by a shield- 4
ing surface is discussed. 7-lobe nozzle (nominal equivalent diameter of

15.75 in.) is also included.
6 

The acoustic shield-

Introduction ing data for multi-element nozzle CTOL-OTW config-
urations are then correlated with that obtained

In order to reduce jet noise to ground ob- with single conical nozzle CTOL-OTW configurations.

servers, future conventional takeoff and landing
(CTOL) aircraft are being considered with engine Acoustic results are presented in terms of

exhaust nozzles located over the wing (OTW). With spectral data. The data were obtained over a range

such a nozzle-wing configuration, the wing can of nominal jet exhaust velocities from 585 to

shield an observer on the ground from significant 1110 ft/sec, depending on the specific nozzle-wing

amounts of jet noise. Jet-noise shielding accom- configuration.

plished by a wing is similar to that observed on
the ground by the erection of a barrier between a Apparatus and Procedure
noise source and an observer. The main differences
between the two applications of barrier shielding
are the nature and generation mechanisms of the
noise sourcel and the close proximity of the noise Aerodynamic. For the small-scale models, jet
source to the shielding surface for aircraft com- velocity decay measurements were obtained using the

pared with ground barrier application. static test stand and associated equipment de-
scribed in reference 7. For the large-scale model,

The acoustic shielding benefits derivable jet velocity decay measurements were obtained at

from CTOL wing shielding of jet noise with unat- the acoustic test stand as described in refer-

tached flow appear to be functions of shielding ence 6. Nozzle pressure ratios from 1.15 to 2.1

surface length, nozzle type, nozzle diameter, jet were used. The total temperature of the jet flow

velocity, jet relative velocity, and flap deflec- was a nominal 5200 R.

tion. The effect of the engine location above the
wing and the importance of shielding surface length Acoustic. All the acoustic data herein were

to the acoustic characteristics of CTOL-OTW config- obtained using cold-flow (ambient temperature)

urations size has been reported in reference 1 for rigs. The small-scale model data were obtained

single conical nozzles. (Other data on jet noise using the acoustic arenas described in refer-

shielding by a wing for the CTOL engine-over-the- ences 1, 5, and 8. The effect of variations in the

wing concept with single nozzles are included in nozzle-to-shielding surface geometry on the acous-

refs. 2 to 4.) The jet noise shielding benefits tic attenuation were obtained using the courtyard

with a multitube mixer nozzle in a CTOL-OTW orien- rig described in reference 1. The acoustic data

tation are described briefly in reference 5. These for the large-scale model were obtained using the

data showed that greater jet noise shielding was rig described in reference 6.

obtained using a mixer nozzle than with a single
conical nozzle for the same total equivalent diam- The acoustic data herein are presented in terms
eter. A possible reason for this greater shielding of sound pressure level spectra in decibels refer-

is the flow field differences between the mixed enced to 2x10
- 5 

N/m
2 . 

No corrections are made to

flow of a multi-element nozzle and that for a the acoustic data for ground reflections. Further

single nozzle of equal flow area. These flow field details regarding acoustic measurement techniques

differences cause an alteration of the noise and procedures are given in references 1 to 8.

sources. This alteration is frequently most pro-
nounced in the vicinity of the shielding surface. Configurations
As a first approximation, the noise sources for

The multi-element nozzles used in the present
study consisted of: a 6-tube mixer nozzle,

5 
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an 8-lobed orifice nozzle,
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nozzles are shown in figures 1 (multitube nozzles) with the 8-tube mixer nozzle. Both lobed mixer

and 2 (lobed nozzles) together with pertinent di- nozzles were tested using shielding surface lengths
mensions. that covered a significant portion of the merged or

coalesced jet flow region. The effect of shielding

Two types of surfaces were used to shield the these various flow regions on jet noise attenuation

jet noise in the present study: (1) airfoils and will be discussed later in terms of peak axial ve-

(2) simple flat boards. (In ref. 1, it was shown locity decay characteristics.

that airfoils and simple boards yield the same
amount of jet noise shielding.) The airfoils used Jet Noise Reduction by Surface Shielding
are also shown in figures 1 and 2 and are described
in the appropriate reference for each nozzle. In For a CTOL-OTW aircraft, the exhaust jet is

addition, simple boards (3/8-in. thick plywood) of located relatively close to the wing surface and is

24-inch span and various chordwise lengths were a distributed noise source. The noise obtained at

used with the multitube nozzles in order to deter- the various frequencies of such an acoustic source

mine the effect of shielding surface geometry on is therefore generated at different distances from

jet noise attenuation. The various nozzle- the surface and at different locations relative to

shielding surface configurations tested are sum- the edge of the barrier (wing or flap trailing
marized in figure 3. edge). An analytical model of the jet noise-source

distribution, therefore, would have to include a

Background complex integration to sum up the contributions of
all the jet noise sources with their local surface

Flow Field Considerations shielding lengths.

The peak velocity decay for a multi-element The present approach employs empirical corre-

nozzle is a function of the mixing characteristics lations of existing data to arrive at a prediction

of the jet flow with the ambient (static) or ex- method for the shielding of jet noise by a wing-

ternal (forward velocity) flow conditions.
9  Flow flap system. The analysis leading to the data cor-

fields and/or peak axial velocity decay plots for relation is given in terms of the SPL difference

the present mixer nozzles without the presence of a between nozzle-plus-shielding-surface and the

shielding surface are shown in figures 4 to 7. The nozzle-only, SPL-SPLN, or ASPL.

flow fields are plotted in terms of constant Mach
number lines as a function of radial distance and A schematic plot of ASPL as a function of

axial distance measured from and along the nozzle frequency for a CTOL-OTW configuration is shown in

exhaust centerline, respectively. The peak axial figure 9. Positive ASPL values indicate that
velocity decay, also shown in these figures, is jet-surface interaction noise sources are dominant
plotted in terms of peak Mach number as a function over the nozzle-alone jet noise while negative

of axial distance measured from the nozzle exhaust ASPL values indicate jet noise shielding by the
plane. Further information regarding these plots wing-flap system. Four basic noise regions, de-
is given in references 6, 9, 10, and 11. Also noted by A, B, C, and D are indicated in figure 9.
shown at the top portion of figures 4 to 7 is a Region A is characterized by noise amplification
superimposed schematic sketch of the shielding over that caused by nozzle-alone jet noise and is
surface to help relate the shielding surface attributed to jet-surface interaction noise sources.
lengths to the data plots for the specific config- Region B is a transition region into the shielding
uration used. Tick marks on the data plots indi- regime that is a function of the interplay between
cate these shielding lengths. For the 6-tube mixer the regions of interaction noise sources and jet
nozzle data shown in figure 4 the shortest shield- noise shielding. When the interaction jet-surface
ing surface, 5.9 inches, provides shielding of jet noise sources are strong (large positive ASPL
noise for regions where the individual jet core values) the slope of this transition region is

flows still can be identified. With the longer steep; whereas when they are weak, the slope of
surfaces the shielding of the jet noise includes this transition region is shallow and blends
regions where the jets are beginning to merge or rapidly into the jet noise shielding portion of the
are actively coalescing into a single large diam- curve shown. Region C typifies a "barrier" shield-
eter jet. For the other configurations (8-tube and ing curve. The region C data are used herein to
lobed nozzles) the shortest shielding surface gen- correlate jet noise shielding ASPL values. Re-
erally shields some of the jet flow mixing region gion D frequently shows a reduced jet noise shield-
as well as the core flow region, ing capability at high frequencies inconsistent

with barrier shielding analyses. The exact reasons
Typical radial profiles of velocity on the for reduced jet noise shielding are not understood;

tube centerline plane of the 6-tube mixer nozzle however, it is believed that the reduced attenua-
are shown in figure 8. At 5.9 inches from the noz- tion is primarily an aeroacoustic interaction
zle exhaust plane zero flow exists at the nozzle (possibly a surface-edge effect) associated with a
centerline and the tubes are substantially acting specific nozzle-wing configuration and reflects
as individual nozzles. With increasing axial dis- the presence of a high frequency noise floor. For

tance downstream, the regions along the nozzle jet noise shielding correlation purposes, only the
centerline begin to fill in until near the end of data in region C are directly applicable; the data
the longest shielding length used (21.4 in.) the in region B, however, have been retained in the
radial velocity profile approaches that for well plots in order to indicate the magnitude of its
mixed turbulent flow, both radially and circumfer- deviation from the correlation for region C. The
entially. Thus, with increasing shielding length data in region D have been deleted in the correla-
downstream of the core flow region, the board (sim- tion plots in order to avoid confusing the data
ulating a wing) shields not only the core flow trends and correlation.
noise but also increasing amounts of the inter-
action jet noise sources associated with the jet
mixing process. Similar trends exist for the data
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Application of Single-Nozzle are curves for region C representing the calculated
Surface Shielding Results ASPL values (eq. (4)) for the diameter of an ele-

ment nozzle, Dx, of 0.93 inch and for the equiva-
Single Nozzle Correlation lent total nozzle diameter, D,, of 2.28 inches.

Good agreement between the measured and calculated
The acoustic shielding provided by a surface values of ASPL is apparent when the element noz-

for the noise associated with jet flow from a zle diameter, Dx, is used in the ASPL prediction
single conical nozzlel was correlated over the equation for region C.
same absolute scalar range of variables as those
included herein by the following flow and geometry When the shielding surface length is suffi-
parameters: cient to include the coalescing or mixed jet flow

region which has a large effective diameter, it is,

SPL - fL f (D)f ( = Z (1) perhaps, reasonable to expect that the ASPL

106 U [f(D)1 f2()] Z () values for a.mixer nozzle could be estimated on the
j basis of the equivalent nozzle diameter, De. The

measured ASPL obtained with the 6-tube mixer noz-
where zle is plotted as a function of frequency for a

shielding length of 21.4 inches in figure 10(b).
2 2 This shielding length includes much of the coalesc-

af (D) 0 1 + 4.5x (2) ing jet flow region as shown in figure 4. Also
f(D) gD 2(2) shown in the figure are curves representing calcu-

o lated ASPL values based on Dx  and De, respec-
tively. It is apparent that neither calculated
curve represents the measured data in region C, al-

f2( 4 (3) though the curve based on Dx  is closer to the

1 + 0.033 ( 6 - data.

From the data in figure 10 it would be con-
(All symbols are defined in Nomenclature.) The cluded that the use of D. in calculating ASPL
correlation equation in reference 1 for nozzle- by use of equation (4) for a mixer nozzle is more
airfoil configuration having zero flap deflection correct that the use of De. However, if a signif-
is given by icant change in scale is considered, such as be-

tween the 7- and 8-lobed mixer nozzle configura-
ASPL = 10 log[l + 0.6(Z)] (4) tions, a different conclusion emerges. The shield-

ing surfaces cover significant portions of the mixed
With the flaps deflected, the correlation is given flow region for both configurations (see figs. 6
in reference 1 by and 7). The ASPL for the small-scale 8-lobed

orifice mixer nozzle (see also appendix A) and the

SPL 10 logl + 1.4()0.85(5) large-scale 7-lobed mixer nozzle configurations are
shown in figure 11 as a function of the Z-parameter

It should be noted that the acoustic shielding based on Dx (fig. 11(a)) and De (fig. 11(b)). It

benefits for unattached flow over a surface, such correlates the differenc e in hereas the use

as conical nozzle CTOL-0TW configurations, were correlates the difference in scale whereas the useas conical nozzle CTOL-OTW configurations, were of D fails.
substantially independynt of nozzle height above f D
the shielding surface. The data, so far, have shown that when sub-

Also, it was established in reference 1 that stantially only the unmixed core flow of a mixer
for single conical nozzles the effect on jet nozzle is shielded by a surface, the term fl(D) isfor single comical nozzles the effect on jet based on Dx . For such a case, the single nozzle
noise attenuation of whether a simple board or an based on D. For such a case, the single nozzle

airfoil was used as the shielding surface was in- correlation (eq. (4) for zero flap deflection and

significant. Tests were also made herein with the eq. (5) for flaps deflected) can be used to predictsignificant. Tests were also made herein with the the LSPL for mixer nozzles. However, for cases
6- and 8-tube mixer nozzles using both a board and in which the mixe et flow is shielded by a sur-

an airfoil and indicated similar results to those in which the mixed jet flow is shielded by a sur-
in reference i. face, fl(D) is better expressed by using De,

based on scaling criteria. However, the ASPL is

Evaluation of Mixer Nozzles not predicted from the single nozzle correlation
given by equations (4) or (5) in either case.

It is reasonable to expect that when the Correlation of Mixer Nozzle-Wing
shielding surface extends only over the jet core C orrelation of Mixer Nozzle-Wing
region associated with the individual tube or lobe Noise Shielding Results
elements of a mixer nozzle, the jet noise shield- Development of Correlation
ing can be estimated directly from correlations of
acoustic data obtained with a single nozzle of The data obtained with the multitube mixer
similar size and shape to that of the mixer nozzle nozzles (see fig. 10) indicated increased jet noise
elements. In figure 10(a) the ASPL obtained nozzles (see fig. 10) indicated increased jet noise
with the 6-tube mixer nozzle is plotted as a func- shielding benefits with longer surface lengths even
tion of frequency for a shielding surface length though the Z-parameter already includes a shielding

of 5.9 inches. The jet core length for a single surface length term that correlated the length ef-of 5.9 inches. The jet core length for a single fect for single conical nozzles. This additional
tube of this mixer nozzle is about 4.7 inches fet for single conical nozzles. This additional

(X/D ~ 5). Calculations of the jet spreading effect on jet noise shielding by increases in
angle, indicate thlculations the flows from adjacent jets shielding surface length is shown in figure 12 inangle, indicate that the flows from adjacent jets which the ASPL is plotted as a function of thebegin to merge between 4.7 and 6 inches downstream product of frequency and length for the 6-tube

of the exhaust plane. Also shown in the figure product of frequency and length for the 6-tubeof the exhaust plane. Also shown in the figure mixer nozzle configurations. It is apparent that
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a systematic variation with surface shielding for single conical and mixer nozzles of the type

length occurs when the mixed flow region is studied by the following relationship:
shielded, resulting in larger ASPL values being
obtained with increasing surface shielding lengths. ASPL - 10 log[l + 0.6(Z'n')] (9)
Similar results were obtained with the 8-tube mixer
nozzle configurations. and equation (5) by

In order to evaluate the relation of shielding ASPL = 10 log[l + 1.4(Z'n')0. 8 5 ]  (10)
length to the flow field in the region between the
jet core flow and the coalescing of mixed flow re- Use of the n'-parameter does not alter the correla-
gion, the preceding acoustic data obtained with the tion of the single conical nozzle data of refer-
6-tube mixer nozzle were used to establish corre- ence 1.
lation relationships.

The data shown in figure 12 suggest that the The n'-parameter utilizes the jet velocity, Uj,
nois e alterdata shown in figure 12 suggest that the as a baseline velocity term in equation (6). How-

noise source alterations associated with the mixed ever, it is felt that a better baseline velocityever, it is felt that a better baseline velocity
flow region of mixer nozzles influences the jet term would be to use the local peak jet velocity
noise attenuation afforded by a shielding surface, when the core jet from one element begins to merge
With an increased amount of the mixed flow field with adjacent core jets. The data used for the
being shielded by increased lengths of shielding present study preclude such an evaluation because
surface, better acoustic attenuation is provided the merging point of adjacent jets did not vary suf-
over a wide range of frequencies. It is postulated ficiently for the present nozzle configurations.
that it is possible to characterize the noise Until such data are available, the use of Uj as
source alterations associated with the flow from the baseline velocity for the n'-parameter is rec-
mixer nozzles by the peak velocity decay in the
flow field. Thus, the value of fl(D) is fl(Dx)
when only the jet core flow is shielded and for Comparison of Measured and Calculated
mixed flow approaches fl(De) with increasing Shielding Data
shielding surface length. It is also postulated
that the number of elements of the mixer nozzle The measured ASPL data are compared with cal-
contributed to an increase in ASPL. On the basis culated values (solid curves) for the four mixer
of the present limited data available with mixer- nozzles used herein in figures 13 to 16. Generally
nozzle/wing configurations the following modifica- good agreement of the shielding benefits has been
tions to correlation equations (1) and (2) were de- achieved with both the board and airfoil surfaces.
veloped in order to provide gross ASPL predic- Because the 6-tube mixer nozzle was used to estab-
tions for CTOL-OTW configurations using mixer lish the n'-parameter, the best agreement exists
nozzles. for this nozzle (fig. 13). With the 8-tube mixer

nozzle configuration (fig. 14), the data points fall
A new parameter, n', which includes the peak slightly below the predicted values based on equa-

velocity decay characteristics in the flow field tion (9), generally about 1 dB in the region for
and gives consideration to the number of nozzle which the correlation was developed; namely, re-
elements, n, has been empirically evolved on the gion C in figure 9.
basis of the present data, as follows:

The 8-lobe orifice nozzle data tend to be
n' = 1 + n 1 (6) somewhat higher than the calculated values based on

equation (10) as shown in figure 15. Although the
1 + 0.1 8-lobe orifice mixer nozzle data appear to indicate

a somewhat higher slope in the variation of ASPL
with the Z'n'-parameter than the multitube data, it

The U-term in equation (6) is the peak axial veloc- is believed that this apparent difference was caused
ity at the location of the trailing edge of the by the flow and acoustic characteristics of the
shielding surface. For the present work, the particular orifice-type nozzle used in the tests.
values of U were obtained from the Mach number
curves given in figures 4 to 7 at the tick-mark The data for the large-scale 7-lobe nozzle
locations for the various shielding surface lengths configuration was about 1 dB below the calculated
noted in the figure. values as shown in figure 16. This small differ-

ence may be due, in part, to loss in attenuation
The n'-parameter is used to modify the fl(D) caused by the 50 angle of the airfoil to the jet

term (eq. (2)) yielding a new term fl(De), where flow as discussed in appendix B and shown in fig-
ure 2(b).

.o 109 Dn' Effect of Forward Velocity
1 e gDn + 4.5x10 2

x The data and correlations discussed so far
apply to static conditions. The effect of jet rel-

The Z-parameter (eq. (1)) is modified to include ative velocity on the noise attenuation of CTOL-OTW
the fl(De) terms as follows: configurations with mixer nozzles, as determined by

experiments in a free jet, is discussed in refer-

10-6fL ences 1 and 5. In general, the spectra given in
Z' U [fl(De)][f 2 (8)] (8) references 1 and 5 show that with a constant jet

Uj velocity the acoustic attenuation due to the effect
of the jet relative velocity is grossly related to

Consequently, equation (4) can now be generalized the 6-power of the jet relative velocity or
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(Uj - Uo) 6 . This relationship holds for both the cation effect increases the noise attenuation in
spectra and OASPL over a wide range of directivity forward flight.
angles, e, for CTOL-OTW configurations using mixer
nozzles.5 Examples of the expected effect of aircraft

motion on the nozzle-wing noise level based on
In view of the preceding discussion, the fol- equation (15) are shown in figure 17. The examples

lowing approximate general relation is taken to are for jet velocities of 800 and 1600 ft/sec.and
hold in the flyover plane for the decrease in OASPL a forward velocity of 150 ft/sec. The calculated
in dB due to jet relative velocity effects obtained values are shown in terms of AOASPL referenced
in a free jet: 12  

to static ground OASPL values as a function of
directivity-angle, 6. Refraction effects on the

U 0 noise level and directivity are neglected in the
AOASPLRV = k(e6) log - (11) example.

With an 800 ft/sec jet velocity (fig. 17(a)),
The empirical parameter k(6) is, at the very the convective amplification (Doppler) effect would

least, a function of the directivity angle and increase the OASPL value obtained in a free jet by
amount of noise generated by the interaction of the about 2.8 dB at a = 400, and decrease the OASPL
jet flow with the shielding surface, or added value by a like amount at 6 = 1400. At 900 the
noise. For CTOL-OTW configurations, k(6) is taken effect of the convective amplification term is
as 60 based on the previously discussed 6-power for zero. With an increase in jet velocity and a con-
the jet relative velocity effects on the SPL spec- stant forward speed, the convective amplification
tra. Thus, equation (11) can be expressed as: effect in the forward quadrant (00 to 900) can more

than cancel out the attenuation due to relative ve-( U0 locity measured in a free jet or wind tunnel. An
AOASPLRV = 60 log (12) example illustrating this case is shown in fig-

S Uj ure 17(b). Here, with a jet velocity, Uj, of
1600 ft/sec and a forward velocity, Uo, of 150 ft/

in dB. Equation (11) applies grossly for direc- sec, the OASPL at a 6 of 400 is greater by 0.3 dB
tivity angles from 400 to 1400. with forward velocity than that measured stati-

cally. At the same time, the attenuation in the
In order to obtain preliminary estimates of rearward quadrant (900 to 1800) is increased by the

aircraft motion on the nozzle-wing noise, however, convective amplification term over that obtained
the effect of relative motion of the noise source by the relative velocity effect only.
with respect to the observer must be added to the
relative velocity effect measured in a free jet. The preceding illustrative calculations of
Because the jet relative velocity effect is given convective or Doppler amplification effects are
by the 6-power, it is assumed that a quadrupole considered only indicative of the expected trends
source is the dominant source affected by forward and require more research in order to verify the
velocity. As a rough approximation, the convective magnitudes of these effects during actual aircraft
or Doppler amplification for a quadrupole source flight.
can be expressed in dB by

Concluding Remarks

A0ASPL = -60 log 1 - cos (13) The use of mixer nozzles in a CTOL-OTW instal-S \o J lation can result in greater jet noise shielding by
the wing-flap system than that obtained with a

and where the Doppler effect on frequency is ex- single conical nozzle of equal thrust. When the
pressed by wing-flap system covers only the unmerged flow re-

gion from the individual elements of a mixer noz-
f (14) zle, the jet noise shielding benefits, in terms of

D U ASPL, can be predicted from the single conical noz-1 - cos 6 zle correlation equations of reference 1. In these
o correlation equations, the diameter term is that of

an element nozzle of the mixer nozzle. However,
The two effects of aircraft motion on OASPL can be when the wing-flap system includes coverage of the
combined into a single expression to represent the mixed flow region of a mixer nozzle, an additional
net effect on the nozzle-wing noise. Thus, from parameter consisting of the number of elements com-
equations (12) and (13), the OASPL in dB for a prising the mixer nozzle and the jet velocity at
CTOL-OTW configuration is given by the end of the shielding surface must be included.

The latter parameter also includes consideration of
IPo)  the peak axial velocity decay for the mixer nozzle.OASPLpv = OASPL0 - 60 log - cosc a

o aAppendix 
A

U uo Acoustic Data for CTOL-OTW Configuration
+ 60 log - (15) Using 8-Lobed Orifice Mixer Nozzle

As part of the acoustic program reported in
In the forward quadrant, the Doppler amplifi- reference 8, SPL data (unpublished) were also ob-

cation effect tends to cancel out some of the for- tained with the 8-lobe orifice nozzle without using
ward velocity effect. The reverse effect occurs in a deflector to attach the flow to the airfoil sur-
the rearward quadrant where the convective amplifi- face. These unpublished data are representative
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of a CTOL-OTW configuration with unattached flow De' effective nozzle diameter

and are shown in figure 18 for a directivity angle
of 1000. The data are presented in terms of ASPL Dx  equivalent element nozzle diameter

as a function of frequency normalized for various

jet velocities, f/U, and for total flap deflection f 1/3 octave band spectrum frequency

angles of 200 and 600. The data for a jet velocity
of 744 ft/sec are used in the present paper as an flf 2  functional notation

example for comparison with an empirical correla- 2
tion equation for predicting the shielding benefits g constant, 32.2 ft/sec 2

when a lobed mixer nozzle is used.
h nozzle (or nozzle element) height above

Appendix B surface at exhaust plane

Effect of Shielding Surface Angularity k(6) empirical parameter characterizing direc-

on Jet Noise Shielding tivity angle and interaction noise
effects

The large-scale, 7-lobe mixer nozzle data

(fig. 11) was obtained originally as part of the L shielding surface length downstream of noz-

ngine under-the-wing externally blown flap study zle exhaust plane

reported in reference 6. For that study the nozzle

was canted 50 toward the airfoil chordline and the Lf shielding surface length upstream of nozzle

data reported were for the region under the wing. exhaust plane

.icrophones, however, were also placed above the

wing and these constitute the large-scale model M local jet Mach number

acoustic data source for the present OTW report.
Thus, for the OTW orientation, the airfoil was Mj jet Mach number at nozzle exhaust plane

angled 50 into the jet flow. In order to determine
the effect of nozzle-airfoil angularity on the Mp peak local jet Mach number

acoustic shielding, data were obtained using a
2.14-inch diameter nozzle with a board acting as n number of elements in mixer nozzle

the shielding surface. Acoustic data obtained with
this nozzle and with the board angled away from the n' source alteration parameter

jet axis (up to 150) were reported previously in
reference 1. For the present work, the board OASPL overall sound pressure level, dB,
(L = 10.4 in.) was angled 50 and 100 into the jet re 2x10 - 5 N/m2

flow. The nozzle was located 1.75 inches above the
board surface. The results of these board angles SPL sound pressure level of nozzle-surface con-
on the jet noise shielding are shown in figure 19 -5 2
for a jet velocity of 672 ft/sec. At a 50 board figuration, dB, re 2>10 N/m

angle into the jet flow, the ASPL's attained were
substantially the same values as at a 00 board ASPL SPL - SPLN, dB

angle. Only the initiation of shielding benefits
was affected by the 50 angularity. This latter re- SPLN sound pressure level of nozzle only, dB,

sult was obtained because the low frequency noise re 2x10 -5 N/m2
was increased and extended to higher frequencies
compared with that at the 00 board angle. At the U peak local axial velocity
100 board angle, the ASPL were substantially re-
duced at all frequencies at which jet noise shield- U jet velocity at nozzle exhaust plane
ing occurred. On the basis of these results, it is i
concluded that the ASPL values measured for the U forward velocity
present 7-lobed mixer nozzle-airfoil configuration 0

could only have been slightly affected by the 50 X axial distance downstream of nozzle ex-
angularity of the airfoil relative to the nozzle haust plane
jet flow.

The correlation of the jet noise shielding Z,Z' jet noise shielding correlation parameters

benefits for CTOL-OTW configurations with multi- a surface deflection angle
element mixer nozzles is based on a limited range
of 6 to 8 nozzle elements. Further work using 6 directivity angle measured from inlet
nozzles with fewer and greater numbers of nozzle
elements and with various spacings between the ele- Subscripts:
ments should be conducted in order to determine the
validity of the correlation presented herein over a D Doppler
wide range of mixer nozzle geometries.

Nomenclature FV forward velocity

a ambient speed of sound RV relative velocity

D nozzle diameter 8 angular location notation for forward ve-
locity equations

De equivalent total nozzle diameter
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Figure 1. -.Multitube mixer nozzle CTOL-OTW configurations. All
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Figure 2 - Sketch of mixer nozzles with wing. All dimensions in
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Figure 3. - Summary of shielding surface configurations. All (b) PEAK AXIAL VELOCITY DECAY.
dimensions in inches.

Figure 4. - Flow field and peak axial velocity decay char-
acteristics for 6-tube mixer nozzle only. Mj, 0.62;
Lf, 2.6 in.; data from ref. 9.
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Figure 5. - Flow field and peak axial velocity decay
characteristics for 8-tube mixer nozzle only.
Mj, 0.64; 1f, 2.6 in.; data from ref. 9.
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Figure 10. - Comparison of measured ASPL
for 6-tube mixer nozzle with calculated
ASPL for single conical nozzle. Jet
velocity, 665 ft/ sec; directivity angle, 900.
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surface lengths. 6-Tube mixer nozzle; jet velocity,
665 ft/ sec; directivity angle, 900.
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